Extremal Eigenvalues of Real Symmetric Matrices with Entries in an Interval

نویسنده

  • Xingzhi Zhan
چکیده

We determine the exact range of the smallest and largest eigenvalues of real symmetric matrices of a given order whose entries are in a given interval. The maximizing and minimizing matrices are specified. We also consider the maximal spread of such matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Eigenvalue Symmetric Matrix Contractor

We propose an eigenvalue contractor for symmetric matrices. Given a symmetric interval matrix A and an interval approximation of its eigenvalue sets λ1, . . . ,λn the contractor reduces the entries of A S such that no matrix with eigenvalues in λ1, . . . ,λn is omitted. Our contractor is based on sequentially reducing the entries of A. We discuss properties of the method and demonstrate its per...

متن کامل

Exclusion and Inclusion Intervals for the Real Eigenvalues of Positive Matrices

Given a real matrix, we analyze an open interval, called row exclusion interval, such that the real eigenvalues do not belong to it. We characterize when the row exclusion interval is nonempty. In addition to the exclusion interval, inclusion intervals for the real eigenvalues, alternative to those provided by the Gerschgorin disks, are also considered for matrices whose off-diagonal entries pr...

متن کامل

Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble

The partly symmetric real Ginibre ensemble consists of matrices formed as linear combinations of real symmetric and real anti-symmetric Gaussian random matrices. Such matrices typically have both real and complex eigenvalues. For a fixed number of real eigenvalues, an earlier work has given the explicit form of the joint eigenvalue probability density function. We use this to derive a Pfaffian ...

متن کامل

Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles

The two archetypal ensembles of random matrices are Wigner real symmetric (Hermitian) random matrices and Wishart sample covariance real (complex) random matrices. In this paper we study the statistical properties of the largest eigenvalues of such matrices in the case when the second moments of matrix entries are infinite. In the first two subsections we consider Wigner ensemble of random matr...

متن کامل

The largest eigenvalue of finite rank deformation of large Wigner matrices: convergence and non-universality of the fluctuations

In this paper, we investigate the asymptotic spectrum of complex or real Deformed Wigner matrices (MN)N defined by MN = WN/ √ N + AN where WN is a N × N Hermitian (resp. symmetric) Wigner matrix whose entries have a symmetric law satisfying a Poincaré inequality. The matrix AN is Hermitian (resp. symmetric) and deterministic with all but finitely many eigenvalues equal to zero. We first show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2005